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Abstract. In this paper we prove that given a weakly almost periodic measure µ sup-

ported inside some model set ΛpW q with closed window W , then the strongly almost peri-

odic component µS and the null weakly almost periodic component µ0 are both supported

inside ΛpW q. As a consequence we prove that given any translation bounded measure ω,

supported inside some model set, then each of the pure point diffraction spectrum pγpp and

the continuous diffraction spectrum pγc is either trivial or have a relatively dense support.

1. Introduction

The discovery of quasi-crystals in 1984 forced the International Union of Crystallography

to amend the definition of crystal. By the new definition, ”by ”crystal” is meant any solid

having an essentially discrete diffraction diagram, and by ”aperiodic crystal” is meant any

crystal in which three dimensional lattice periodicity can be considered to be absent.”

Mathematically, physical diffraction is described as follows: given a translation bounded

measure µ in a σ-compact locally compact Abelian group G, we construct a new measure

γ called the autocorrelation measure of µ. As γ is a positive definite measure, it is a

Fourier Transformable measure, and its Fourier Transform pγ is a positive measure on pG.

The measure pγ describes the physical diffraction of µ. As any measure, the diffraction has

a Lesbegue decomposition with respect to the Haar measure θ
pG

of pG:

pγ � pγpp � pγc � pγpp � ppγac � pγscq .
The measures pγpp, pγc are called the discrete (or pure point) respectively continuous spectra

of µ.

It is usually understood that the diffraction is essentially discrete if the discrete spectrumpγpp has relatively dense support, that is if there exists some compact set K � pG so thatpγpppx�Kq � 0 for all x P pG.

The best mathematical models for quasicrystals are produced by cut and project schemes.

This method was introduced by Y. Meyer in [14] in order to generate a class of models with

interesting harmonic properties. The method was rediscovered independently by Kramer [9]

in 1984. Kramer used this method to produce a three dimensional icosahedral quasicrystal

by projection from a 6 dimensional hypercubic lattice. It was only later that Lagarias [10]

and Moody [17] connected the work of Meyer, Kramer and de Bruijn [7], and realized the

importance of this method to long range aperiodic order.
1
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Given a locally compact group H, and a lattice rL � G � H such that the projection

pG : rLÑ G is one to one and the projection pH : rLÑ H is dense, then any compact set W

with non-empty interior defines a Delone set

ΛpW q :� tx|px, x�q P rL, x� PW u .

The set ΛpW q is called a model set. If ΛpW q is regular model set, that is if the boundary

of W has Haar measure zero, then its diffraction measure pγ is purely discrete [24].

While regular model sets are good models for quasi-crystals, they are usually hard to

characterize. In contrast, in Rd, there are few simple characterizations for relatively dense

subsets of model sets [14], [10], [16], and some of them have been extended recently to the

case G a σ-compact, locally compact Abelian group [20].

The simplest, due to Lagarias [10], is the following: A relatively dense set Λ � Rd is a

dense subset of a model set if and only if

∆ :� Λ� Λ � tx� y|x, y P Λu ,

is uniformly discrete. Such a set is called a Meyer set.

In [21] we proved that for a Meyer set Λ, the discrete diffraction spectrum pγpp has a

relatively dense support, and that the continuous spectrum pγc is either trivial or also has

relatively dense support, a result which generalizes the similar results for subsets of lattices

proven by M. Baake [3], [5]. To prove this, we actually proved the stronger result that pγpp
and pγc are strongly almost periodic measures, and that pγpp � 0.

We also proved in [22] that pγpp is a sup almost periodic measure, and that for some C ¡ 0

the characters in ∆Cε are also ε sup-almost periods of pγ.

While the results in [22] were easily extended to arbitrary translation bounded weighted

Dirac combs supported inside model sets, the method of comparing the autocorrelation of

the Meyer set to the autocorrelation of a larger regular model set we used in [21] could not

be extended beyond the case of real valued weighted combs [21], [23]. The goal of this paper

is to prove that in the case of weighted Dirac combs supported inside model sets, both the

discrete and continuous diffraction spectra pγpp, pγc are strongly almost periodic measures, a

result which completes are previous work on the diffraction of measures supported on Meyer

sets.

The reason why we could not extend the results of [21], [23] to the case of complex valued

weighted Dirac combs is simple: our key tool is the fact that the projection PS from the

space of weakly almost periodic measures to the space of strongly almost periodic measures

is positive thus reserves inequalities. Also, writing the complex weighted Dirac comb ω as

a linear combination of two real values measures ω1, ω2 doesn’t help either, as the autocor-

relation of ω cannot be expressed in general as a linear combination of autocorrelations of

ω1 and ω2.

What we do instead is express the autocorrelation γ (or more generally any weakly almost

periodic measure supported inside a fixed model set) as a linear combination of two real

valued weakly almost periodic measures supported inside a model set and then try to use
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the properties of the projection PS on these two measures. In doing this, we cannot compare

them anymore the autocorrelation of a regular model set, but we simply fix this by showing

that we can always find a larger strongly almost periodic measure supported inside a model

set.

The main result we get in this paper is the following:

Theorem 4.6 Let pG�H, rLq be any cut and project scheme, and let W � H be compact.

Then for all µ PWAP pGq with supppµq � ΛpW q, we have

supppµSq, supppµ0q � ΛpW q .

This paper is organized as follows:

In Section 2 we review the definitions and properties of cut and project schemes and

model sets, while in Section 3 we review the definitions and properties of almost periodic

measures.

In Section 4 we define the new notion of dominating sets, and we study the connection

between this notion and almost periodicity. We then use the results of this Section to prove

Theorem 4.6.

We complete the paper by applying Theorem 4.6 to the autocorrelation of an arbitrary

weighted Dirac comb supported inside a model set. We combine this result with some

previous results obtained in this direction to get:

Theorem 5.1 Let pG�H, rLq is a fixed cut and project scheme, W � H is a pre-compact

set and

ω �
¸

xPΛpW q
ωpxqδx ,

be any translation bounded weighted Dirac comb supported inside ΛpW q. Let γ be any

autocorrelation of ω. Then,

i) supppγSq, supppγ0q � ΛpW �W q.

ii) γS is norm almost periodic.

iii)

lim
n

|γ0| pAnq

VolpAnq
� 0 .

iv) ppγqpp, ppγqc are strongly almost periodic measure.

v) The set B :� tχ|pγptχuq � 0u of Bragg peaks is either empty or relatively dense.

vi) If ω ¥ 0 and there exists some a ¡ 0 so that tx|ωpxq ¡ 0u is relatively dense, then

B is relatively dense.

vii) The continuous spectra suppppγcq is either empty or relatively dense.

viii) There exists a C ¡ 0 so that for all ε ¡ 0 and all χ P ΛpW �W qε and all ψ P pG
we have

|pγptψ � χuq � pγptψuq| ¤ Cε .

ix) ppγqpp is a sup almost periodic measure.
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2. Model Sets

For the entire paper G is a fixed σ-compact locally compact Abelian group.

In this section we review the notions of cut and project schemes, model sets, ε-dual

characters and dual cut and project scheme.

Definition 2.1. A cut and project scheme consists of a direct product G �H of G and a

locally compact Abelian group H, and a lattice rL in G � H such that with respect to the

natural projections π1 : G�H Ñ G and π2 : G�H Ñ H we have:

i) π1 restricted to L is one-to-one,

ii) π2pLq is dense in H.

(1)

G
π1ÐÝ G�H

π2ÝÑ H .�rL
We denote the cut and project scheme by pG�H, rLq.

Let pG�H, rLq be a cut and project scheme. Then, the restriction π1|rL : rLÑ π1prLq is a

bijection, thus it has an inverse. Thus we can define a function � : π1prLq Ñ H by

x� � π2pπ
�1
1 pxqq .

This function is called the star map.

With this mapping, we get rL � tpx, x�q|x P π1prLqu .
Definition 2.2. A set Λ � G is called a model set if there exists a cut and project scheme

pG�H, rLq and a precompact set W � H with non-empty interior, so that

Λ � ΛpW q :� tx P π1prLq|x� PW u .

The following results were proven by Moody [16] in the case G � Rd and by Meyer [14]

in the case of H � Rd. We check now that their proofs can easily be extended beyond Rd.

Lemma 2.3. Let pG�H, rLq be a cut and project scheme, and let W � H.

i) If W has non-empty interior, then ΛpW q is relatively dense.

ii) If W is precompact, then ΛpW q is uniformly discrete.

Proof:

(i): The idea of the proof is simple: rL�pK1�K2q � G�H. As W has non-empty interior,

K2 can be covered by finitely many translates of W , and those translates can be chosen in

π2prLq. The preimage of those translates under the �-map defines a finite set F , and we will

show that ΛpW q is �F �K1 relatively dense.
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As rL is relatively dense in G�H, there exists K1,K2 be compact sets so that rL� pK1�

K2q � G�H. Also, as π2prLq is dense in H and W has non-empty interior, we have

K2 � H � π2prLq �W .

By the compactness of K2, there exists a finite set F � π1prLq so that K2 � F � �W , where

F � � tf�|f P F u. We claim that

ΛpW q � YfPF p�f �K1q � G .

Indeed, let x P G. Then px, 0q P G�H � rL� pK1 �K2q, thus we can write

px, 0q � pl, l�q � pk, yqwith pl, l�q P rL ; pk, yq P K1 �K2 .

Since y P K2 � F � �W , there exists some f P F and w PW so that y � f� � w. Then

px, 0q � pl, l�q � pk, yq � px, 0q � pl, l�q � pk, 0q � p0, f� � wq

� pl, l�q � pk � f, 0q � pf, f�q � p0,�wq � pl � f, pl � fq�q � pk � f,�wq ,

and hence

px� k � f, wq � pl � f, pl � fq�q P rL .
This shows that x� k � f P ΛpW q and hence

x P ΛpW q � k � f � ΛpW q �K � F .

As x P G was arbitrary, we get that

G � ΛpW q � pK � F q ,

which proves that ΛpW q is relatively dense.

(ii): Since W is precompact, the set W �W is compact. Let 0 P U be a precompact open

set in G. We will show that ΛpW �W q X U is finite, and thus we can find a smaller open

set 0 P V such that ΛpW �W q X V � t0u. Thus ΛpW q is V -uniformly discrete.

As U �W �W is precompact in G�H, and rL is a lattice, the set

F :� rLX �U �W �W
�

is finite. A straightforward computation yields

ΛpW �W q X U � π1pF q .

Thus ΛpW �W q X U is a finite set containing 0. Then, there exists 0 P V � U open set in

G so that �
ΛpW �W q X U

�
X V � t0u .

Since V is a subset of U we have

t0u �
�
ΛpW �W q X U

�
X V � ΛpW �W q X V .

Now our claim follows from

ΛpW q � ΛpW q � ΛpW �W q .

�
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We now introduce the notion of dual cut and project scheme. Our proof follows the proofs

of [16], [15] very closely, we simply check that those proofs hold if we replace Rd by G.

Lemma 2.4. Let pG�H, rLq be a cut and project scheme, and letrL0 :� tχ P Ĝ� Ĥ|χptq � 1@t P rL ,
be the dual lattice. Then p pG� Ĥ, rL0q is a cut and project scheme.

Proof: First lets note that by [19] we have {G�H � pG � pH and, under this isomorphism

we have �
G�HrL


^
� rL0 ;

�
Ĝ� ĤrL0

�^
� rL .

Since G�H
rL

is compact and rL is discrete, by the Pontryagin Duality rL0 is discrete and Ĝ�Ĥ
rL0

is compact, thus rL0 is a lattice in Ĝ� Ĥ.

We will denote the two projections of Ĝ� Ĥ onto pG and Ĥ by π11 and π12.

We start by showing that π12prL0q is dense in Ĥ: By Pontryagin Duality, as the mapping

π1 : rLÑ G is one to one, the dual mapping

xπ1 : ĜÑ
Ĝ� ĤrL0

has dense image. We prove that this implies that the projection π12 : rL0 Ñ Ĥ has dense

image. Indeed, let U � Ĥ be any open set. As xπ1 has dense image,
�
Ĝ� t0u � rL0

	
X� pG� U � rL0

	
� H. Let

px, yq � rL0 P
�
Ĝ� t0u � rL0

	
X
� pG� U � rL0

	
.

Then, there exists two elements l1, l2 P rL0 such that

px, yq � l1 P Ĝ� t0u ; px, yq � l2 P Ĝ� U .

Hence their difference l2 � l1 P Ĝ� U which proves that

π12pl2 � l1q P π
1
2prL0q X U .

Hence π12prL0q X U � H. As U was an arbitrary open set, this implies that π12prL0q is dense

in H.

Now we prove that the restriction π11|rL0 of π11 to rL0 is one to one.

Again, by the Pontryagin Duality, as the mapping π2 : rL Ñ H had dense image, the dual

mapping

xπ2 : Ĥ Ñ
Ĝ� ĤrL0

is one to one. We show that this implies that π11|rL0 is one to one. Let l P kerpπ11|�L0q. As

π11plq � 0, we can write l � p0, yq with y P Ĥ. Thenxπ2pyq � p0, yq � rL0 � l � rL0 � 0� rL0 �xπ2p0q .
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As xπ2 is one to one, we get l � 0, which shows that kerpπ11|�L0q � t0u. �
We complete this section by introducing the ε-dual characters and showing that for a

model set ΛpW q the set ΛpW qε is relatively dense.

Lemma 2.5. Let pG�H, rLq be a cut and project scheme, and let W � H be precompact.

Let ε ¡ 0. Then the set

ΛpW qε :� tχ P pG| |χpxq � 1| ¤ ε

of ε dual characters is relatively dense.

Proof: Let

NpW, εq � tχ P Ĥ| |χpxq � 1|   ε ; @x PW u .

By Pontryagin duality, as W is compact, the set NpW, εq is open in Ĥ.

We will prove that ΛpW qε contains the set Γ :� ΛpNpW, εqq defined in the dual cut and

project scheme p pG � Ĥ, rL0q by the window NpW, εq. Then, by Lemma 2.3, (i), the set

ΛpW qε is relatively dense.

Let Γ be the model set defined in the dual cut and project scheme p pG � Ĥ, rL0q by the

window NpW, εq, that is

Γ � tψ P pG|Dχ P NpW, εqso thatpψ, χq P rL0u .

We show that Γ � ΛpW qε. Indeed, let ψ P Γ. Then, there exists χ P NpW, εq so that

pψ, χq P rL0.

Hence, for all x P ΛpW q we have x� PW �W and therefore

|χpx�q � 1|   ε .

Since px, x�q P rL and pψ, χq P rL0 we also have

ψpxqχpx�q � pψ, χqpx, x�q � 1 .

Thus,

|ψpxq � 1| �

���� 1

χpx�q
� 1

���� � ���χpx�q � 1
��� � ���χpx�q � 1

���   ε .

This shows that |ψpxq � 1|   ε for all x P ΛpW q, and hence ψ P ΛpW qε. �

3. Almost Periodic Measures

In this section we review the definitions and properties of almost periodic measures, as

introduced in [11].

Definition 3.1. A measure µ on G is called translation bounded (or shift bounded)

if for all f P CCpGq the function f � µ is uniformly continuous and bounded.

We will denote by M8pGq the space of translation bounded measures on G.
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All the measures we study in this paper are translation bounded.

It was proven in ([2], Theorem 1.1) that a measure µ is translation bounded if and only if,

for each compact set K there exists a constant CK such that

(2) |µ| px�Kq   CK ; @x P G,

where |µ| denotes the variation od µ. Baake and Moody [6] showed that this is equivalent

to (2) holding for a single compact set with non-empty interior.

We now introduce the notion of almost periodicity. As almost periodicity for measures is

obtained from almost periodicity for functions by convolution, we introduce first the notions

of strongly and weakly almost periodicity for functions.

Definition 3.2. A function f P CU pGq is called Bohr-almost periodic if the set tT xf |x P Gu

is precompact in pCU pGq, } }8q, where

T xfpyq � fp�x� yq ,

and CU pGq denotes the space of uniformly continuous, bounded functions on G. f P CU pGq

is called weakly almost periodic if the set tT xf |x P Gu is precompact in the weak topology of

pCU pGq, } }8q.

The space of weakly almost periodic functions is closed under complex conjugations and

taking absolute values:

Lemma 3.3. ([8], Theorem 12.1) If f is weakly almost periodic, the |f | and f are also

weakly almost periodic functions.

Eberlein proved that every weakly almost periodic measure is amenable [8], but since we

don’t need to use the notion of amenability in full, we simply introduce a simplified version

of the mean Mpfq of a weakly almost periodic function f :

Proposition 3.4. ([1]) Let f be a weakly almost periodic function, and let tAnu be a van

Hove sequence (see for example [6], Appendix for the definition). Then

lim
n

³
An
fptqdt

VolpAnq
,

exists. We will denote this limit by Mpfq.

We are now ready to translate the concepts of almost periodicity from functions to mea-

sures.

Definition 3.5. A translation bounded measure µ is called strongly almost periodic if

for all f P CCpGq, the function µ � f is a Bohr-almost periodic function.

µ is called weakly almost periodic if for all f P CCpGq, the function µ � f is weakly

almost periodic function.

µ is called null-weakly almost periodic if for all f P CCpGq, the function µ � f is weakly

almost periodic function and

Mp|µ � f |q � 0 .
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We will denote by WAP pGq,SAP pGq and WAP 0pGq the subspaces ([11], Proposition 5.1)

of M8pGq consisting of weakly almost periodic measures, strongly almost periodic measures

respectively null weakly almost periodic measures.

The space WAP pGq contains all translation bounded positive definite measures. In The-

orem 3.6, we will see that WAP pGq � SAP pGq
À

WAP 0pGq, and for double Fourier Trans-

formable measures this decomposition is exactly the Fourier Dual decomposition of mea-

sures into discrete and continuous components ([11], Theorem 11.2). Those two facts make

the space WAP pGq and the decomposition below important in the study of mathematical

diffraction.

Theorem 3.6. ([11], Theorem 7.2, Proposition 7.2 and Theorem 8.1 ) Every µ PWAP pGq

can be written in an unique way as

µ � µS � µ0 ; µS P SAP pGq, µ0 PWAP 0pGq .

Moreover, if µ ¥ 0 then µs ¥ 0.

We conclude the section by proving two simple results we will need in the remaining of

the paper: Lemma 3.7 and Corollary 3.11.

Lemma 3.7. Let µ P M8pGq. Then µ is weakly almost periodic measure if and only if µ

is weakly almost periodic.

Proof: Since µ � µ it suffices to prove that if µ P WAP pGq then µ P WAP pGq. We will

see that follows immediately from the fact that this is true for functions:

Let µ P WAP pGq and let f P CCpGq be arbitrary. Then f P CCpGq and thus µ � f P

WAP pGq. Then, by Lemma 3.3 we get

µ � f � µ � f PWAP pGq .

This shows that µ � f PWAP pGq for all f P CCpGq. �

Remark 3.8. In [11], the authors introduce a locally convex topology on M8, which they

call the product topology, and then define weakly almost periodicity and strongly almost

periodicity for a measure µ in terms of the set tδx � µ|x P Gu being precompact in the weak

respectively product topology on M8. Then, they prove in Corollary 5.5 that the definition

is equivalent to the one we introduced before. It is easy to prove that the mapping µÑ µ is

continuous in both the product and weak topology of M8, which also can be used to prove

Lemma 3.7.

As we want to work with inequalities, we cannot work with complex valued measures.

Instead we will look to the real and imaginary parts:

Definition 3.9. Let µ PM8pGq. We define

Repµq �
1

2
pµ� µq ,
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Impµq �
1

2i
pµ� µq .

It is easy to check that if µ PM8 then Repµq, Impµq are also translation bounded. We now

show that they are real measures.

Lemma 3.10. Let µ PM8pGq. Then Repµq, Impµq are real valued measures.

Proof: Let f P CCpGq be a real valued function. Then

µpfq � µpfq P R .

Now, since f is real valued, we have

µpfq � µpfq � µpfq .

Thus

pµ� µq pfq P R .

Similarly,

1

2i
pµ� µqpfq �

1

2i
pµpfq � µpfqq P R .

It follows that Repµqpfq, Impµqpfq P R for all real valued f P CCpGq, which proves our

claim. �
We next show that the real and imaginary parts of weakly almost periodic measures are

also weakly almost periodic, which will allow us to pass from complex valued weakly almost

periodic measures to real valued weakly almost periodic measures when needed.

Corollary 3.11. Let µ PM8pGq. Then µ is weakly almost periodic measure if and only if

Repµq and Impµq are weakly almost periodic.

Proof:

ñ: This is an immediate consequence of Lemma 3.7: µ is also a weakly almost periodic

measure and hence, as WAP pGq is a subspace of M8 we get

1

2
pµ� µq ;

1

2i
pµ� µq PWAP pGq .

ð: Follows immediately from µ � Repµq � iImpµq. �
We complete the section by introducing a large class of strongly almost periodic measures

produced by a cut and project scheme.

Lemma 3.12. ([13], Theorem 3.1) Let pG � H, rLq be a cut and project scheme and let

g P CCpHq. Let

ωg :�
¸
px, x�q P rLgpx�qδx .

Then, ωg P SAP pGq.
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The result of Lemma 3.12 was first proven in the case g � 1W � �1W in ([6] Theorem 2

and Lemma 7), and it is easy to check that their proof works for arbitrary g P CCpGq. The

result was later generalized to the case of rapidly decaying functions g P C0pRdq [18], and

then to rapidly decaying functions g P C0pHq [13]. The class of measures of the type ωg
with g P CCpHq is also studied in more detail and characterized in terms of norm almost

periodicity in [20].

4. Dominating sets

Let A � G. We will denote by WAP pAq,SAP pAq and WAP 0pAq the spaces of weakly,

strongly respectively null weakly almost periodic measures supported inside A. We define

now a new notion of dominant sets:

Definition 4.1. Let A be a closed set in G. We say that B is a dominant set for A if

A � B and for each real valued µ PWAP pAq, there exists some ν P SAP pBq so that µ ¤ ν.

We say that B is a strong dominant set for A if A � B and for each real valued

µ PM8pGq with supppµq � A, there exists some ν P SAP pBq so that µ ¤ ν.

Remark 4.2. i) Let A be a closed set in G and let B be a dominant set for A. If

C � A is closed and B � D then D is a dominant set for C.

ii) Let A be a closed set in G. Then any strong dominant set for A is also a dominant

set for A.

iii) By replacing the measure µ in the definition of dominant set by �µ, it can be

shown that if B is a dominant set for A and µ PWAP pAq, then there exists some

measure ν 1 P SAP pGq such that ν 1 ¤ µ.

The inequalities can also be inverted in the definition of strong dominant sets.

In this paper we will only be interested in dominant sets for model sets. In the next Lemma,

we show that given a model set ΛpW q, or more generally an arbitrary uniformly discrete set

A, there is a simple criteria which tells us if some set B is a strong dominating set.

Lemma 4.3. Let A be an uniformly discrete set in G and let A � B. Then B is a strong

dominant set for A if and only if there exists some ν P SAP pBq so that ν ¥ δA.

Proof: ñ: Follows immediately from the definition of strong dominant sets, as for uniformly

discrete sets A we have δA PM8pGq.
ð: Let µ PM8pGq be a real value measure with supppµq � A. As A is uniformly discrete,

we can write

µ �
¸
xPA

µpxqδx .

Since µ is translation bounded, there exists some C ¡ 0 so that µpxq   C @x P A. Then

µ ¤ CδA ¤ Cν ,

which completes the proof. �
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Combined with Lemma 3.12, Lemma 4.3 shows that given a model set ΛpW q we can always

find a larger model set in the same cut and project scheme, which strongly dominates ΛpW q.

This together with Theorem 4.4 below will prove our main result.

Theorem 4.4. Let A be a closed set in G and let B be a dominant set for A. Then for all

µ PWAP pAq we have

supppµSq, supppµ0q � B .

Proof: Since supppµq � supppµq, we get supppRepµqq, supppImpµqq � A. Thus, by Lemma

3.11, it suffices to prove this result for real measures.

Let µ P WAP pAq be a real valued measure. Since B dominates A, we can find two

measures ν1, ν2 P SAP pBq so that

µ ¤ ν1 ; �µ ¤ ν2 .

Hence

ν1 � µ ¥ 0 ; ν2 � µ ¥ 0 .

Now, we look at the projections on SAP pGq. By Theorem 3.6 we have

pν1 � µqS ¥ 0 ; pν2 � µqS ¥ 0 .

Using the linearity of the projection on the strongly almost periodic component, and the

fact that by the uniqueness of the decomposition we have νi P SAP pGq ñ pνiqS � νi we get

�ν2 ¤ µS ¤ ν1 .

Now, as supppν1q, supppν2q � B we get

supppµSq � B .

To complete the proof we just observe that since µ0 � µ�µS and supppµSq � B , supppµq �

A � B we get

supppµ0q � B .

�
Next, we show that if in a given cut and project scheme, model sets with pre-compact

window are always dominated by model sets with larger open window. This is an immediate

consequence of Lemma 3.12, Lemma 4.3 and the fact that if W � U are so that U is open

and W compact, then we can find a non-negative function f P CCpGq which is 1 on W and

0 outside U .

Proposition 4.5. Let pG�H, rLq be any cut and project scheme, and let W � H be pre-

compact. Let U be any open set containing W . Then ΛpUq is a strong dominating set for

ΛpW q.

Proof: Let g P CCpHq be so that g ¥ 0, gpxq � 1@x P H and supppgq � U . Then, by

Lemma 3.12 we have ωg P SAP pGq. In particular, ωg P SAP pΛpUqq. As g � 1 on W we get

ωg ¥ δΛpW q ,
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and the result follows from Lemma 4.3. �
We now proceed to prove the main result in the paper.

Theorem 4.6. Let pG�H, rLq be any cut and project scheme, and let W � H be compact.

Then for all µ PWAP pΛpW qq we have

supppµSq, supppµ0q � ΛpW q .

Proof: Let U � H be a fixed precompact open set containing W . Then by Proposition 4.5

the set ΛpUq is a strong dominating set for ΛpW q, and thus, by Theorem 4.4, supppµSq �

ΛpUq. We complete the proof by showing that µS is zero at every point in ΛpUqzΛpW q.

We know that ΛpUq is uniformly discrete. Thus, since supppµSq � ΛpUq we can write

µS �
¸

xPΛpUq
µSptxuqδx .

Let x P ΛpUqzΛpW q. We claim µSptxuq � 0.

As x P ΛpUqzΛpW q we have x� P pU0zW q. We define Ux :� Uztx�u. Then Ux is open

in H and W � Ux. Then, by combining again Proposition 4.5 and Theorem 4.4, we get

supppµSq � ΛpUxq and hence µSptxuq � 0 as desired. �

Remark 4.7. Under the assumptions of Theorem 4.6, if W has empty interior, by exactly

the same argument as in the proof of ([6], Lemma 4) one can show that ΛpW q is not relatively

dense. In this case it follows that SAP pΛpW qq � t0u. In particular, Theorem 4.6 implies

that any measure µ PWAP pΛpW qq is automatically null weakly almost periodic.

Combining Theorem 4.6 with Theorem 3.6 we get:

Corollary 4.8. Let pG�H, rLq be any cut and project scheme, and let W � H be compact,

with non-empty interior. Let Λ � ΛpW q. Then

WAP pΛq � SAP pΛq �WAP 0pΛq .

5. On the autocorrelation and diffraction for weighted model combs

In this section we look at the consequences of Theorem 4.6 to the diffraction of weighted

Dirac combs supported inside model sets. We skip the formal definitions of autocorrelation

and diffraction measures, and refer the reader instead to [4].

Given a model set ΛpW q in some cut and project scheme pG�H, rLq and some translation

bounded measure

ω �
¸

xPΛpW q
ωpxqδx ,

then any autocorrelation γ of ω can be written [6]

γ �
¸

xPΛpW�W q
γpxqδx .
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As γ is a weakly almost periodic measure supported inside ΛpW �W q, we can apply The-

orem 4.6 to this measure to obtain

supppγSq, supppγ0q � ΛpW �W q ,

which leads to some interesting properties of the discrete and continuous spectra of ω.

We combine this together with some results proven in [6], [21], [22] and [23] in the Theorem

5.1:

Theorem 5.1. Let pG �H, rLq be a cut and project scheme, W � H be a pre-compact set

and

ω �
¸

xPΛpW q
ωpxqδx ,

be any translation bounded weighted Dirac comb supported inside ΛpW q. Let γ be any auto-

correlation of ω, and An be any van Hove sequence in G. Then

i) supppγSq, supppγ0q � ΛpW �W q.

ii) γS is norm almost periodic.

iii)

lim
n

|γ0| pAnq

VolpAnq
� 0 .

iv) ppγqpp, ppγqc are strongly almost periodic measure.

v) The set B :� tχ|pγptχuq � 0u of Bragg peaks is either empty or relatively dense.

vi) If ω ¥ 0 and there exists some a ¡ 0 so that tx|ωpxq ¡ 0u is relatively dense, then

B is relatively dense.

vii) The continuous spectra suppppγcq is either empty or relatively dense.

viii) There exists a C ¡ 0 so that for all ε ¡ 0 and all χ P ΛpW �W qε and all ψ P pG
we have

|pγptψ � χuq � pγptψuq| ¤ Cε .

ix) ppγqpp is a sup almost periodic measure.

Proof: i): As W is precompact, the set W �W is compact, and thus Λ � Λ is uniformly

discrete. Then , as

supppγq � Λ� Λ � ΛpW �W q ,

the claim follows from Theorem 4.6.

ii): follows from ([6], Proposition 8).

iii): is proven in ([21], Proposition 5.7).

iv): is a consequence of ([11], Corollary 11.1).

v) and vii): follow from ([21], Proposition 3.5).

vi): is a consequence of ( [23], Theorem 4.9).

We now complete the proof by proving viii) and ix). The proof is almost identical to

([22], Proposition 9.4), the only difference is that by a simple argument we eliminate the

requirement that γ is positive.
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As ω is translation bounded, we get that γ is translation bounded. Thus, there exists a

constant D ¡ 0 do that

|γptxuq| ¤ D ; @x P D .

Let ΛpKq be any regular model set containing ΛpW �W q. Then, as |γ| ¤ DδΛpKq we have

|γ| pAnq

VolpAnq
¤ D

7pΛpKq XAnq

VolpAnq
.

By ([16], Theorem 1)

denspΛpKqq � lim
n

7pΛpKq XAnq

VolpAnq
.

exists and is finite, thus

C :� lim sup
nÑ8

|γ| pAnq

VolpAnq
  8 .

Now, by [12], for all ϕ P pG we have

pγptϕuq � lim
n

pϕγqpAnq

VolpAnq
.

Thus

|pγptψ � χuq � pγptψuq| � ����limn pψ � χγ � ψγqpAnq

VolpAnq

����
¤ lim sup

n

��pψ � χγ � ψγqpAnq
��

VolpAnq

¤ lim sup
n

��pψ � χ� ψq
�� |γ| pAnq

VolpAnq

� lim sup
n

°
tPΛpW�W qXAn

��ψ � χptq � ψptq
�� |γ| ptq

VolpAnq

� lim sup
n

°
tPΛpW�W qXAn

��ψptq��� |χptq � 1| |γ| ptq

VolpAnq

¤ lim sup
n

°
tPΛpW�W qXAn

ε |γ| ptq

VolpAnq

� ε lim sup
n

|γ| pAnqq

VolpAnq
� εC .

(3)

This proves viiq. ixq follows now from viiiq and the relatively denseness of ΛpW �W qε inpG. �

Remark 5.2. If ωpxq ¥ 0@x P Λ, then γS belongs to the cone PSDpGq of positive, positive

definite, strongly almost periodic discrete measures introduced in [23].

We complete the section by proving that the conditions iiq and iiiq in Theorem 5.1

determine the decomposition γ � γS � γ0.
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Lemma 5.3. Let µ be a weakly almost periodic measure, let An be a van Hove sequence

and let µ1, µ2 be such that

i) µ � µ1 � µ2,

ii) µ1 is norm almost periodic,

iii)

lim
n

|µ2| pAnq

VolpAnq
� 0 .

Then

µ1 � µS ; µ2 � µ0 .

Proof: Since µ1 is norm almost periodic, it is strongly almost periodic ([6], Lemma 7).

Therefore µ2 � µ � µ1 is weakly almost periodic as the difference of two weakly almost

periodic measures. It follows from ([21], Proposition 5.7), µ2 is null weakly almost periodic.

Then the claim follows from the uniqueness of Theorem 3.6.

�

Remark 5.4. We should emphasize here that while for measures supported inside model

sets, the decomposition µ � µs � µ0 is uniquely characterized by Lemma 5.3, for general

weakly almost periodic measures, µs is not necessarily norm almost periodic and µ0 does

not necessarily satisfy

lim
n

|µ0| pAnq

VolpAnq
� 0 .

For example

µ � δZ � δp
?

2Zq� 1
2
.

is a strongly almost periodic measure, but µs � µ is not a norm almost periodic ([22],

Proposition 7.3).

Also, as shown in ([21], Example 5.8) the measure

ν � δZ �
¸
nPZ�

δn� 1
n
,

is a null weakly almost periodic measure, but

lim
n

|ν| pAnq

VolpAnq
� 2 .
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